首页> 外文OA文献 >Exploring relationships between canopy architecture, light distribution and photosynthesis in contrasting rice genotypes using 3D canopy reconstruction
【2h】

Exploring relationships between canopy architecture, light distribution and photosynthesis in contrasting rice genotypes using 3D canopy reconstruction

机译:利用3D冠层重构探索水稻基因型对比中冠层结构,光分布和光合作用之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties - four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64) - was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax) throughout canopy depth, hypothesising that light is the sole determinant of productivity in these conditions. First we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.
机译:叶子材料的排列对于确定光照环境以及随后确定复杂作物冠层的光合生产力至关重要。但是,对于田间种植的作物,人们对广泛的遗传背景下的特定冠层建筑性状与光合作用生产力之间的联系了解甚少。在五个不同的生长阶段,采用了一种基于数字植物重建的方法,捕获了五个遗传多样性水稻品种的结构-一个多亲代高级杂交(MAGIC)群体的四个亲本创始人和一个高产菲律宾品种(IR64)。立体摄像机。光线追踪用于高分辨率探索冠层结构对最终光环境的影响,同时将气体交换测量结果与光合作用的经验模型相结合,以计算估计的碳增益和总光截留率。为了进一步测试不同动态光模式对光合特性的影响,采用了光合适应的经验模型来预测整个冠层深度的最佳光饱和光合速率(Pmax),并假设光是这些条件下生产力的唯一决定因素。 。首先,我们证明了具有较陡的叶片角的植物类型可以使光更有效地穿透到较低的树冠层中,从而导致更大的光合作用潜力。其次,预测的最佳Pmax以与该种质上的部分截留和叶面积指数一致的方式响应。但是,测得的Pmax(尤其是在较低层中)始终高于最佳Pmax,这表明除光以外的其他因素决定了光合作用的概况。最后,具有更直立结构的品种表现出更高的光合作用最大量子产率,表明冠层水平对光合作用效率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号